## POZNAN UNIVERSITY OF TECHNOLOGY



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

## **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Chromatografia procesowa (Process chromatography)

Course

Field of study Year/Semester

Technologia chemiczna (Chemical Technology) 1/2

Area of study (specialization)

Profile of study

Technologia organiczna (Organic technology) general academic Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements full-time compulsory

**Number of hours** 

Lecture Laboratory classes Other (e.g. online)

15

Tutorials Projects/seminars

## **Number of credit points**

2

#### Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

prof. dr hab. inż. Adam Voelkel

## **Prerequisites**

Basic physical, inorganic, organic and analytical chemistry on academic level; knowledge of mathematical tools used in chemical calculations; Can use basic laboratory techniques of separation and cleaning chemical compounds

## **Course objective**

resentation of process applications of chromatographic techniques. Newest achievements and tendencies in process design. Basic of process chromatography dedicated to separation of biologically active substances.

#### **Course-related learning outcomes**

Knowledge

- 1. knowledge in the field of techniques, methods connected with the application of techniques in process chromatography
- [K\_W03,K\_W11]

## POZNAN UNIVERSITY OF TECHNOLOGY



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. can describe methods, techniques, tools and materials used for the solution of simple problems connected with process chromatography - [K\_W07, K\_W13]

#### Skills

- 1. Student can select the proper technique for process chromatography [K\_U01, K\_U08, K\_U09, K\_U14]
- 2. Student can discuss chromatographic problems in English. [K U05, K U06]

## Social competences

- 1. Student understands the need to supplement her/his education and increasing professional competences. [K K01]
- 2. Student has the awareness to obey the engineer ethic rules. [K\_K03, K\_K05]
- 3. Student can act and cooperate in the group accepting different roles. [K KO4]

## Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

written control work

## **Programme content**

Combined techniques on process chromatography. Sample derivatization for chromatographic analysis. Miniaturization in process gas chromatography. Process applications of chromatography as a tool of separation of biologically active substances. Engineering of chromatographic installation. Modeling of chromatographic processes. Chromatography in biochemical industry.

#### **Teaching methods**

#### lecture

## **Bibliography**

#### Basic

- Chromatografia procesowa, K. Kadlec, A. Voelkel, WPP, Poznań, 2011.
- 2. Zastosowanie metod chromatograficznych, K. Bielicka-Daszkiewicz, K. Milczewska, A. Voelkel, Wyd. PP, Poznań, 2005, 2010.

#### Additional

L. Mondello, Comprehensive Chromatography in Combination with Mass Spectrometry, Wiley, Singapur, 2011.





## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# Breakdown of average student's workload

|                                                                             | Hours | ECTS |
|-----------------------------------------------------------------------------|-------|------|
| Total workload                                                              | 50    | 2,0  |
| Classes requiring direct contact with the teacher                           | 25    | 1,0  |
| Student's own work (literature studies, preparation for tests) <sup>1</sup> | 25    | 1,0  |

3

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  delete or add other activities as appropriate